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LETTER TO THE EDITOR

On the stability of relativistic one-electron molecules
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Abstract. In appropriate units, the no-pair Hamiltonian for a system of one-electron relativistic
molecules withK fixed nuclei, having charge and positionZk,Rk , k = 1, 2, . . . , K, is of
the formB1,K = 3+(D0 + αVc)3+, where3+ is the projection onto the positive spectral
subspace of the free Dirac operatorD0 andVc = −

∑K
k=1

αZk
|x−Rk | +

∑K
k<l,k,l=1

αZkZl
|Rk−Rl | , with

α Sommerfeld’s fine structure constant. We discuss the background and significance of our result
that forαZk 6 αZc = 2

π/2+2/π , k = 1, 2, . . . , K, andα 6 2π
(π2+4)(2+

√
1+π/2)

,B1,K > const·K,

and give an outline of the main features of our proof.

A system ofN electrons andK static nuclei is known to be stable when governed by non-
relativistic quantum mechanics. This means that the ground state energyE0 associated with
the Hamiltonian, which, in appropriate units, is of the form

HN,K =
N∑
j=1

(−1j) + αVc (1)

satisfies

E0 > const· (N +K); (2)

in (1),α is Sommerfeld’s fine structure constant andVc is the Coulomb potential of the electrons
and nuclei, namely

Vc(x1, . . . ,xN) = −
N∑
j=1

K∑
k=1

Zk

|xj −Rk| +
∑

16j<l6N

1

|xj − xl| +
∑

16j<k6K

ZjZk

|Rj −Rk| (3)

where thexj ,Rk denote the coordinates of thej th electron andkth nucleus respectively, and
Zk the charge of thekth nucleus. The result (2) was originally established by Dyson and
Lenard in the seminal paper [7]. Subsequently, Lieb and Thirring [13] gave a different and
considerably easier proof, and obtained a much improved constant in (2). The latter paper has
also had a profound effect on the subject, and has generated a substantial amount of work in
this area of research.

If relativistic considerations are introduced, there is an immediate problem if the Laplacian
−1 in (1) is replaced by the free Dirac operatorD0 = 1

i
α · ∇ + β (whereα = (α1, α2, α3),

andαj , β are 4× 4 Dirac matrices) on account of continuum dissolution; the many-body
Hamiltonian ceases to have a spectral gap and hence there are no bound states. To overcome
this problem, various approximation have been tried. In [5] Conlon investigated

Hrel
N,K =

N∑
j=1

{(−1j + 1)
1
2 } + αVc (4)
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and proved stability forZk = 1, k = 1, 2, . . . , K, as long asα < 10−200; Fefferman and de
la Llave [9] improved Conlon’s result to a computer-assisted range forα of α 6 1/2.06π, or
α 6 1

5π otherwise. The single-particle operator

Hrel
1,1 = (−1 + 1)

1
2 − αZ|x| (5)

was shown by Herbst in [11] (see also Weder [17]) to be bounded below (and in fact positive)
in L2(R3) if and only if αZ 6 2/π , with an absolutely continuous spectrum in [1,∞) for
αZ < 2/π and an infinity of positive energy levels accumulating at 1. For the optimal range
αZk 6 2/π , k = 1, 2, . . . , K in (4), Lieb and Yau proved in [14] that there is stability if and
only if α is less than some critical valueαc > 1

94; this paper also contains a comprehensive
description of the problem and a survey of the progress that had been made up to that time.

Another way to proceed in the relativistic case is to follow the lead of Brown and Ravenhall
in [3] and work with the Hamiltonian

BN,K = 3+

( N∑
j=1

D
(j)

0 + αVc

)
3+ (6)

where3+ is the projection onto the electronic Hilbert space of antisymmetric spinors

H(N) =
N∧
j=1

H(j)+

whereH(j)+ is the positive spectral subspace of the Dirac operatorD
(j)

0 acting in the space of
thej th electron. In the case of one electron (N = 1) the explicit form of the projection is

3+ = 1

2

{
14 +

α · p + β

e(p)

}
(7)

wheree(p) =
√
p2 + 1, and14 is the unit 4× 4 matrix. Some interesting properties of the

one-electron operator

B1,1 = 3+

[
D0 − αZ|x|

]
3+ (8)

inH ≡ L2(R3)⊗C4 have been uncovered in recent years. For instance, we have the following:

• In [8], B1,1 is shown to be bounded below if and only ifαZ 6 αZc =: γc = 2/(π2 + 2
π
),

thus confirming a prediction of Hardekopf and Sucher in [10] based on numerical
considerations. The critical chargeZc is approximately 124 on takingα = 1

137, and
hence all known elements are included in the range. In [4, 15] it was proved thatB1,1 is
in fact positive forZ 6 Zc.
• When αZ 6 γc, the essential spectrum ofB1,1 coincides with [1,∞), the singular

continuous spectrum being empty ifαZ < γc.
• The upper bound max(1, 2αZ − 1

2) for eigenvalues was obtained in [1] using a virial
theorem, and this implies that the spectrum ofB1,1 is absolutely continuous in [1,∞) if
αZ 6 3

4. The number34 features in other interesting ways forB1,1 (see [16]).

As a first step in a projected investigation of the relativistic stability problem using the
HamiltonianBN,K as model, the single-electron caseN = 1 is considered in [2], the objective
being to establish stability for the optimal rangeαZk 6 γc, k = 1, 2, . . . , K, and a range
α 6 αc which includes the physical value≈ 1

137. The strategy is based on that of Daubechies
and Lieb in [6] who considered the analogous problem for the HamiltonianHrel

1,K . The main
result is as follows.
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Theorem (Stability of one-electron molecules in the Brown–Ravenhall model). Let
αZk 6 γc = 2/(π2 + 2

π
), k = 1, 2, . . . , K and α 6 2π

(π2+4)(2+
√

1+π/2)
. ThenB1,K exhibits

stability, i.e.B1,K > const·K in H.

To achieve this, substantial modifications to the elegant proof of Daubechies and Lieb are
necessary, in the absence of inequalities for symmetric decreasing rearrangements of functions
which play a prominent role in [7], and the presence of an indefinite integral kernel. The first
step is the reduction of the problem for the single-particle operatorB1,1 to that for an operator
b1,1 acting on Pauli spinors inH2 ≡ L2(R3)⊗C2, using the observation that anyψ ∈ 3+H
has Fourier transform of the form

ψ̂(p) = 1

n(p)

(
[e(p) + 1]u(p)
(p · σ)u(p)

)
wheren(p) = [2e(p)(e(p) + 1)]1/2 andu ∈ H2. The operatorb1,1 is bounded below if and
only if the (massless) homogeneous operator

b̃1,1 = |p| − 1

2
αZ

(
1

|x| +
p · σ
|p|

1

|x|
p · σ
|p|

)
is non-negative, as their difference can be extended to a bounded operator onH2. The non-
negativeness of̃b1,1 for αZ 6 γc is equivalent to the fact that the non-negative operator
K = γc 1√|x|P+

1
|p|P+

1√|x| , whereP+ = 1
2(1 + p·σ

|p| ), satisfies sup‖ψ‖=1(ψ,Kψ) = 1; here(·, ·)
and‖ · ‖ denote the inner-product and norm respectively in the underlying Hilbert space. A
local form of the latter fact has a pivotal role in the proof: for allψ ∈ H2 with support in the
ballB(0, R) = {x : |x| < R},

(ψ,Kψ) 6 ‖ψ‖2 − 1

(π3 + 4π)R3

(∫
R3
|ψ(x)| dx√|x|

)2

. (9)

To prove this a partial wave decomposition ofH2 in terms of spherical spinors is used, and an
important role is played by the inequality

p · σ
|p|2 6

x · σ
|x|

1

|p|
x · σ
|x| (10)

which relates to the different expressions forB1,1 in x andp spaces. Once (9) is available the
strategy of Daubechies and Lieb can be followed.

Other obstacles have to be overcome for the many-particle problem forBN,K . In the
general case when relativity and spin–field interaction are included, the Hamiltonian is

BN,K(A) = 3+(A)

( N∑
j=1

D
(j)

A + αVc

)
3+(A) +Hf ield (11)

where

DA = α ·
(

1

i
∇ +A

)
+ β

Hf ield is the field energy

Hf ield = 1

8πα

∫
R3
B(x)2 dx

andB = curlA is the magnetic field. However, the choice of3+(A) in (11) is critical as
demonstrated in [12]. In [12] it is shown that if3+(A) is chosen to be3+, the projection onto
H(N), then given any positiveα andZk, there are values ofN andK for which

inf (ψ,BN,K(A)ψ) = −∞;
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here the infimum is taken over all magnetic potentialsA in the Coulomb guage, all nuclear
positions and all normalizedψ ∈ H(N). However, the choice for3+(A) of the projection onto

HN,A =
N∧
j=1

H(j)+ (A)

whereH(j)+ (A) is the positive spectral subspace ofD
(j)

A guarantees stability for small enough
values ofα andZk, e.g.Zk 6 56 forα = 1

137.

The authors are grateful to the European Union for support under the TMR grant FMRX-
CT96-0001.
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