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LETTER TO THE EDITOR

On the stability of relativistic one-electron molecules
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Cardiff CF2 4YH, UK

Received 22 December 1998

Abstract. In appropriate units, the no-pair Hamiltonian for a system of one-electron relativistic
molecules withK fixed nuclei, having charge and positiofy, Ry, k = 1,2,..., K, is of

the form By x = A+(Do + aV.)A+, where Ay is the projection onto the positive spectral
subspace of the free Dirac operatop and V. = -k, |ma21§k| Z/ﬁu«l:‘l %, with

« Sommerfeld’s fine structure constant. We discuss the background and significance of our result

__ 2 _ 2
that foraZ;y < aZ. = 2T k=1,2,...,K,anda < Wfl\/T/Z)’BLK > const- K,
and give an outline of the main features of our proof.

A system of N electrons and static nuclei is known to be stable when governed by non-
relativistic quantum mechanics. This means that the ground state efgagsociated with
the Hamiltonian, which, in appropriate units, is of the form

N
Hyx =Y (-A)+aV, (1)
j=1
satisfies
Eo > const: (N + K); 2

in (1), « is Sommerfeld’s fine structure constant ands the Coulomb potential of the electrons
and nuclei, namely

1 YAVA

Vi(x,...,zN) = —+ i - 3

(@1 = ;;m, Ryl 1<,;<N jac; — Kj;“ R -Rl
where thex ;, R, denote the coordinates of thigh electron andth nucleus respectively, and
Z, the charge of théth nucleus. The result (2) was originally established by Dyson and
Lenard in the seminal paper [7]. Subsequently, Lieb and Thirring [13] gave a different and
considerably easier proof, and obtained a much improved constant in (2). The latter paper has
also had a profound effect on the subject, and has generated a substantial amount of work in
this area of research.

If relativistic considerations are introduced, there is an immediate problem if the Laplacian

—Ain (1) is replaced by the free Dirac operafog = %a -V + 8 (Wherea = (o1, a2, a3),
anda;, B are 4x 4 Dirac matrices) on account of continuum dissolution; the many-body
Hamiltonian ceases to have a spectral gap and hence there are no bound states. To overcome
this problem, various approximation have been tried. In [5] Conlon investigated

N
H' ZZ{(—AJ+1)%}+01VC (4)
=1
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and proved stability foZ;, = 1,k = 1,2,..., K, as long asx < 1072, Fefferman and de
la Llave [9] improved Conlon’s result to a computer-assisted range fifre < 1/2.06m, or
a < %n otherwise. The single-particle operator

H = (—a+1)} - 22 (5)
’ ||
was shown by Herbst in [11] (see also Weder [17]) to be bounded below (and in fact positive)
in L2(R®) if and only if «Z < 2/, with an absolutely continuous spectrum in ¢) for
aZ < 2/7 and an infinity of positive energy levels accumulating at 1. For the optimal range
aZy <2/m,k=12,...,K in(4), Lieband Yau proved in [14] that there is stability if and
only if « is less than some critical value > @, this paper also contains a comprehensive
description of the problem and a survey of the progress that had been made up to that time.
Another way to proceed in the relativistic case is to follow the lead of Brown and Ravenhall

in [3] and work with the Hamiltonian

N
By = A+<ZD£,’) +aVC>A+ (6)

j=1
whereA . is the projection onto the electronic Hilbert space of antisymmetric spinors

Hoy = /\ H(/)

whereH} is the positive spectral subspace of the Dirac operafft acting in the space of
the jth electron. In the case of one electravi £ 1) the explicit form of the projection is

a-p+f
e(p) } )

wheree(p) = /p?+ 1, andl, is the unit 4x 4 matrix. Some interesting properties of the
one-electron operator

3t

aZ
By = A |:Do - ﬁi| Ay (8)

inH = L2(R®) ®C*have been uncovered in recentyears. Forinstance, we have the foIIowing:

e In [8], By is shown to be bounded below if and onlyi¥ < «Z. = y. = 2/(5 + =
thus confirming a prediction of Hardekopf and Sucher in [10] based on numerical
considerations. The critical chard&. is approximately 124 on taking = 137, and
hence all known elements are included in the range. In [4,15] it was provedBihab
in fact positive forZ < Z..

e WhenoZ < y,., the essential spectrum @;; coincides with [1o0), the singular
continuous spectrum being emptyi¥ < y..

e The upper bound mag, 2« Z — %) for eigenvalues was obtained in [1] using a virial
theorem, and this implies that the spectruniaf; is absolutely continuous in [bo) if
aZ < 3. The numbeg features in other interesting ways B4 1 (see [16]).

As a first step in a projected investigation of the relativistic stability problem using the
HamiltonianBy x as model, the single-electron cage= 1 is considered in [2], the objective
being to establish stability for the optimal rang€;, < y., k =1,2,...,K, and a range
a < o which includes the physical valuve137 The strategy is based on that of Daubechies
and Lieb in [6] who considered the analogous problem for the Hamiltoﬂgﬁg. The main
result is as follows.
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Theorem (Stability of one-electron molecules in the Brown—Ravenhall model). Let
aZy S ye =2/G+2), k=12 Kade < gzms- ThenBix exhibits
stability, i.e.B1 ¢ > const- K in ‘H.

To achieve this, substantial modifications to the elegant proof of Daubechies and Lieb are
necessary, in the absence of inequalities for symmetric decreasing rearrangements of functions
which play a prominent role in [7], and the presence of an indefinite integral kernel. The first
step is the reduction of the problem for the single-particle opefiqrto that for an operator
b1.1 acting on Pauli spinors if; = L2(R®) ® C?, using the observation that agy e A H
has Fourier transform of the form

1 ([e(p)+ 1u(p) )

v = n(p) < (p- o)u(p)

wheren(p) = [2e(p)(e(p) + 1]¥? andu € H,. The operatob; ; is bounded below if and
only if the (massless) homogeneous operator

~ 1 1 coclp-o

biam - az (122 Looo)

2 x| Ipl Ixl Ipl
is non-negative, as their difference can be extended to a bounded operater dhe non-
negativeness oby 1 for «Z < y. is equivalent to the fact that the non-negative operator
1 1 1 1 Red Tofi .

K= VCﬁRHPJfT_z' whereP, = 5(1+ %)’ satlsflgs su_mzl(x/f, Kr) = 1; here(~, 2
and|| - || denote the inner-product and norm respectively in the underlying Hilbert space. A
local form of the latter fact has a pivotal role in the proof: foralie H, with support in the

ball BO, R) = {z : |z| < R},

1 dz \?
(W, Ky) < ||w||2—m(L3|w<m>|i>. 9)

||

To prove this a partial wave decompositior?¢f in terms of spherical spinors is used, and an
important role is played by the inequality

p-co x-0clax-o

2 "zl lpl |x]
which relates to the different expressions 8y ; in  andp spaces. Once (9) is available the
strategy of Daubechies and Lieb can be followed.

Other obstacles have to be overcome for the many-particle probleB§qr. In the

general case when relativity and spin—field interaction are included, the Hamiltonian is

(10)

N
By k(A) = A+(A) < Y DY+ avc) A+(A) + Hyioa (11)

j=1
where

1
DA:a- <—V+A> +/3
1
Hjyiqq is the field energy

1
Hyiwa = — | B(z)?d
field 8ra Jgs ()" d

and B = curl A is the magnetic field. However, the choice &f(A) in (11) is critical as
demonstrated in [12]. In [12] it is shown thatAf, (A) is chosen to be ., the projection onto
Hn), then given any positive andZ,, there are values d¥ andK for which

inf(y, By x (A)Y) = —00;
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here the infimum is taken over all magnetic potenti&ls the Coulomb guage, all nuclear
positions and all normalizegl € Hy,. However, the choice fak . (A) of the projection onto

N
Hya= [\ HY (A)

j=1

whereHY (A) is the positive spectral subspace&f) guarantees stability for small enough

values ofe andZ;, e.9.Z; < 56 fora = 5.

The authors are grateful to the European Union for support under the TMR grant FMRX-
CT96-0001.
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