On the stability of relativistic one-electron molecules

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 L129
(http://iopscience.iop.org/0305-4470/32/11/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:27

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the stability of relativistic one-electron molecules

A Balinsky and W D Evans
School of Mathematics, Cardiff University, 23 Senghennydd Road, PO Box 926, Cardiff CF2 4YH, UK

Received 22 December 1998

Abstract

In appropriate units, the no-pair Hamiltonian for a system of one-electron relativistic molecules with K fixed nuclei, having charge and position $Z_{k}, \boldsymbol{R}_{k}, k=1,2, \ldots, K$, is of the form $B_{1, K}=\Lambda_{+}\left(D_{0}+\alpha V_{c}\right) \Lambda_{+}$, where Λ_{+}is the projection onto the positive spectral subspace of the free Dirac operator D_{0} and $V_{c}=-\sum_{k=1}^{K} \frac{\alpha Z_{k}}{\left|x-\boldsymbol{R}_{k}\right|}+\sum_{k<l, k, l=1}^{K} \frac{\alpha Z_{k} Z_{l}}{\left|\boldsymbol{R}_{k}-\boldsymbol{R}_{l}\right|}$, with α Sommerfeld's fine structure constant. We discuss the background and significance of our result that for $\alpha Z_{k} \leqslant \alpha Z_{c}=\frac{2}{\pi / 2+2 / \pi}, k=1,2, \ldots, K$, and $\alpha \leqslant \frac{2 \pi}{\left(\pi^{2}+4\right)(2+\sqrt{1+\pi / 2})}, B_{1, K} \geqslant$ const $\cdot K$, and give an outline of the main features of our proof.

A system of N electrons and K static nuclei is known to be stable when governed by nonrelativistic quantum mechanics. This means that the ground state energy E_{0} associated with the Hamiltonian, which, in appropriate units, is of the form

$$
\begin{equation*}
\boldsymbol{H}_{N, K}=\sum_{j=1}^{N}\left(-\Delta_{j}\right)+\alpha V_{c} \tag{1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
E_{0} \geqslant \text { const } \cdot(N+K) \tag{2}
\end{equation*}
$$

in (1), α is Sommerfeld's fine structure constant and V_{c} is the Coulomb potential of the electrons and nuclei, namely
$V_{c}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=-\sum_{j=1}^{N} \sum_{k=1}^{K} \frac{Z_{k}}{\left|\boldsymbol{x}_{j}-\boldsymbol{R}_{k}\right|}+\sum_{1 \leqslant j<l \leqslant N} \frac{1}{\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{l}\right|}+\sum_{1 \leqslant j<k \leqslant K} \frac{Z_{j} Z_{k}}{\left|\boldsymbol{R}_{j}-\boldsymbol{R}_{k}\right|}$
where the $\boldsymbol{x}_{j}, \boldsymbol{R}_{k}$ denote the coordinates of the j th electron and k th nucleus respectively, and Z_{k} the charge of the k th nucleus. The result (2) was originally established by Dyson and Lenard in the seminal paper [7]. Subsequently, Lieb and Thirring [13] gave a different and considerably easier proof, and obtained a much improved constant in (2). The latter paper has also had a profound effect on the subject, and has generated a substantial amount of work in this area of research.

If relativistic considerations are introduced, there is an immediate problem if the Laplacian $-\Delta$ in (1) is replaced by the free Dirac operator $D_{0}=\frac{1}{i} \boldsymbol{\alpha} \cdot \boldsymbol{\nabla}+\beta$ (where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, and α_{j}, β are 4×4 Dirac matrices) on account of continuum dissolution; the many-body Hamiltonian ceases to have a spectral gap and hence there are no bound states. To overcome this problem, various approximation have been tried. In [5] Conlon investigated

$$
\begin{equation*}
\boldsymbol{H}_{N, K}^{r e l}=\sum_{j=1}^{N}\left\{\left(-\Delta_{j}+1\right)^{\frac{1}{2}}\right\}+\alpha V_{c} \tag{4}
\end{equation*}
$$

and proved stability for $Z_{k}=1, k=1,2, \ldots, K$, as long as $\alpha<10^{-200}$; Fefferman and de la Llave [9] improved Conlon's result to a computer-assisted range for α of $\alpha \leqslant 1 / 2.06 \pi$, or $\alpha \leqslant \frac{1}{5} \pi$ otherwise. The single-particle operator

$$
\begin{equation*}
\boldsymbol{H}_{1,1}^{r e l}=(-\Delta+1)^{\frac{1}{2}}-\frac{\alpha Z}{|x|} \tag{5}
\end{equation*}
$$

was shown by Herbst in [11] (see also Weder [17]) to be bounded below (and in fact positive) in $L^{2}\left(\boldsymbol{R}^{3}\right)$ if and only if $\alpha Z \leqslant 2 / \pi$, with an absolutely continuous spectrum in $[1, \infty)$ for $\alpha Z<2 / \pi$ and an infinity of positive energy levels accumulating at 1 . For the optimal range $\alpha Z_{k} \leqslant 2 / \pi, k=1,2, \ldots, K$ in (4), Lieb and Yau proved in [14] that there is stability if and only if α is less than some critical value $\alpha_{c}>\frac{1}{94}$; this paper also contains a comprehensive description of the problem and a survey of the progress that had been made up to that time.

Another way to proceed in the relativistic case is to follow the lead of Brown and Ravenhall in [3] and work with the Hamiltonian

$$
\begin{equation*}
\boldsymbol{B}_{N, K}=\Lambda_{+}\left(\sum_{j=1}^{N} D_{0}^{(j)}+\alpha V_{c}\right) \Lambda_{+} \tag{6}
\end{equation*}
$$

where Λ_{+}is the projection onto the electronic Hilbert space of antisymmetric spinors

$$
\mathcal{H}_{(N)}=\bigwedge_{j=1}^{N} \mathcal{H}_{+}^{(j)}
$$

where $\mathcal{H}_{+}^{(j)}$ is the positive spectral subspace of the Dirac operator $D_{0}^{(j)}$ acting in the space of the j th electron. In the case of one electron $(N=1)$ the explicit form of the projection is

$$
\begin{equation*}
\Lambda_{+}=\frac{1}{2}\left\{\mathbf{1}_{4}+\frac{\boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta}{e(\boldsymbol{p})}\right\} \tag{7}
\end{equation*}
$$

where $e(\boldsymbol{p})=\sqrt{\boldsymbol{p}^{2}+1}$, and $\mathbf{1}_{4}$ is the unit 4×4 matrix. Some interesting properties of the one-electron operator

$$
\begin{equation*}
\boldsymbol{B}_{1,1}=\Lambda_{+}\left[D_{0}-\frac{\alpha Z}{|x|}\right] \Lambda_{+} \tag{8}
\end{equation*}
$$

in $\mathcal{H} \equiv \mathrm{L}^{2}\left(\boldsymbol{R}^{3}\right) \otimes \boldsymbol{C}^{4}$ have been uncovered in recent years. For instance, we have the following:

- In [8], $\boldsymbol{B}_{1,1}$ is shown to be bounded below if and only if $\alpha Z \leqslant \alpha Z_{c}=: \gamma_{c}=2 /\left(\frac{\pi}{2}+\frac{2}{\pi}\right)$, thus confirming a prediction of Hardekopf and Sucher in [10] based on numerical considerations. The critical charge Z_{c} is approximately 124 on taking $\alpha=\frac{1}{137}$, and hence all known elements are included in the range. In [4,15] it was proved that $\boldsymbol{B}_{1,1}$ is in fact positive for $Z \leqslant Z_{c}$.
- When $\alpha Z \leqslant \gamma_{c}$, the essential spectrum of $\boldsymbol{B}_{1,1}$ coincides with [1, ∞), the singular continuous spectrum being empty if $\alpha Z<\gamma_{c}$.
- The upper bound $\max \left(1,2 \alpha Z-\frac{1}{2}\right)$ for eigenvalues was obtained in [1] using a virial theorem, and this implies that the spectrum of $\boldsymbol{B}_{1,1}$ is absolutely continuous in $[1, \infty)$ if $\alpha Z \leqslant \frac{3}{4}$. The number $\frac{3}{4}$ features in other interesting ways for $\boldsymbol{B}_{1,1}$ (see [16]).
As a first step in a projected investigation of the relativistic stability problem using the Hamiltonian $\boldsymbol{B}_{N, K}$ as model, the single-electron case $N=1$ is considered in [2], the objective being to establish stability for the optimal range $\alpha Z_{k} \leqslant \gamma_{c}, k=1,2, \ldots, K$, and a range $\alpha \leqslant \alpha_{c}$ which includes the physical value $\approx \frac{1}{137}$. The strategy is based on that of Daubechies and Lieb in [6] who considered the analogous problem for the Hamiltonian $\boldsymbol{H}_{1, K}^{\text {rel }}$. The main result is as follows.

Theorem (Stability of one-electron molecules in the Brown-Ravenhall model). Let $\alpha Z_{k} \leqslant \gamma_{c}=2 /\left(\frac{\pi}{2}+\frac{2}{\pi}\right), k=1,2, \ldots, K$ and $\alpha \leqslant \frac{2 \pi}{\left(\pi^{2}+4\right)(2+\sqrt{1+\pi / 2})}$. Then $\boldsymbol{B}_{1, K}$ exhibits stability, i.e. $\boldsymbol{B}_{1, K} \geqslant$ const $\cdot K$ in \mathcal{H}.

To achieve this, substantial modifications to the elegant proof of Daubechies and Lieb are necessary, in the absence of inequalities for symmetric decreasing rearrangements of functions which play a prominent role in [7], and the presence of an indefinite integral kernel. The first step is the reduction of the problem for the single-particle operator $\boldsymbol{B}_{1,1}$ to that for an operator $b_{1,1}$ acting on Pauli spinors in $\mathcal{H}_{2} \equiv \mathrm{~L}^{2}\left(\boldsymbol{R}^{3}\right) \otimes \boldsymbol{C}^{2}$, using the observation that any $\psi \in \Lambda_{+} \mathcal{H}$ has Fourier transform of the form

$$
\hat{\psi}(\boldsymbol{p})=\frac{1}{n(\boldsymbol{p})}\binom{[e(\boldsymbol{p})+1] u(\boldsymbol{p})}{(\boldsymbol{p} \cdot \boldsymbol{\sigma}) u(\boldsymbol{p})}
$$

where $n(\boldsymbol{p})=[2 e(\boldsymbol{p})(e(\boldsymbol{p})+1)]^{1 / 2}$ and $u \in \mathcal{H}_{2}$. The operator $b_{1,1}$ is bounded below if and only if the (massless) homogeneous operator

$$
\tilde{b}_{1,1}=|\boldsymbol{p}|-\frac{1}{2} \alpha Z\left(\frac{1}{|x|}+\frac{\boldsymbol{p} \cdot \boldsymbol{\sigma}}{|\boldsymbol{p}|} \frac{1}{|x|} \frac{\boldsymbol{p} \cdot \boldsymbol{\sigma}}{|\boldsymbol{p}|}\right)
$$

is non-negative, as their difference can be extended to a bounded operator on \mathcal{H}_{2}. The nonnegativeness of $\tilde{b}_{1,1}$ for $\alpha Z \leqslant \gamma_{c}$ is equivalent to the fact that the non-negative operator $\mathcal{K}=\gamma_{c} \frac{1}{\sqrt{|x|}} P_{+} \frac{1}{|p|} P_{+} \frac{1}{\sqrt{|x|}}$, where $P_{+}=\frac{1}{2}\left(1+\frac{p \cdot \sigma}{|p|}\right)$, satisfies $\sup _{\|\psi\|=1}(\psi, \mathcal{K} \psi)=1$; here (\cdot, \cdot) and $\|\cdot\|$ denote the inner-product and norm respectively in the underlying Hilbert space. A local form of the latter fact has a pivotal role in the proof: for all $\psi \in \mathcal{H}_{2}$ with support in the ball $B(0, R)=\{x:|x|<R\}$,

$$
\begin{equation*}
(\psi, \mathcal{K} \psi) \leqslant\|\psi\|^{2}-\frac{1}{\left(\pi^{3}+4 \pi\right) R^{3}}\left(\int_{R^{3}}|\psi(x)| \frac{\mathrm{d} x}{\sqrt{|x|}}\right)^{2} . \tag{9}
\end{equation*}
$$

To prove this a partial wave decomposition of \mathcal{H}_{2} in terms of spherical spinors is used, and an important role is played by the inequality

$$
\begin{equation*}
\frac{p \cdot \sigma}{|p|^{2}} \leqslant \frac{x \cdot \sigma}{|x|} \frac{1}{|p|} \frac{x \cdot \sigma}{|x|} \tag{10}
\end{equation*}
$$

which relates to the different expressions for $\boldsymbol{B}_{1,1}$ in \boldsymbol{x} and \boldsymbol{p} spaces. Once (9) is available the strategy of Daubechies and Lieb can be followed.

Other obstacles have to be overcome for the many-particle problem for $\boldsymbol{B}_{N, K}$. In the general case when relativity and spin-field interaction are included, the Hamiltonian is

$$
\begin{equation*}
\boldsymbol{B}_{N, K}(\boldsymbol{A})=\Lambda_{+}(\boldsymbol{A})\left(\sum_{j=1}^{N} D_{\boldsymbol{A}}^{(j)}+\alpha V_{c}\right) \Lambda_{+}(\boldsymbol{A})+H_{\text {field }} \tag{11}
\end{equation*}
$$

where

$$
D_{A}=\alpha \cdot\left(\frac{1}{i} \nabla+A\right)+\beta
$$

$H_{\text {field }}$ is the field energy

$$
H_{\text {field }}=\frac{1}{8 \pi \alpha} \int_{\boldsymbol{R}^{3}} \boldsymbol{B}(\boldsymbol{x})^{2} \mathrm{~d} \boldsymbol{x}
$$

and $\boldsymbol{B}=$ curl \boldsymbol{A} is the magnetic field. However, the choice of $\Lambda_{+}(\boldsymbol{A})$ in (11) is critical as demonstrated in [12]. In [12] it is shown that if $\Lambda_{+}(\boldsymbol{A})$ is chosen to be Λ_{+}, the projection onto $\mathcal{H}_{(N)}$, then given any positive α and Z_{k}, there are values of N and K for which

$$
\inf \left(\psi, \boldsymbol{B}_{N, K}(\boldsymbol{A}) \psi\right)=-\infty ;
$$

here the infimum is taken over all magnetic potentials A in the Coulomb guage, all nuclear positions and all normalized $\psi \in \mathcal{H}_{(N)}$. However, the choice for $\Lambda_{+}(\boldsymbol{A})$ of the projection onto

$$
\mathcal{H}_{N, \boldsymbol{A}}=\bigwedge_{j=1}^{N} \mathcal{H}_{+}^{(j)}(\boldsymbol{A})
$$

where $\mathcal{H}_{+}^{(j)}(\boldsymbol{A})$ is the positive spectral subspace of $D_{A}^{(j)}$ guarantees stability for small enough values of α and Z_{k}, e.g. $Z_{k} \leqslant 56$ for $\alpha=\frac{1}{137}$.

The authors are grateful to the European Union for support under the TMR grant FMRX-CT96-0001.

References

[1] Balinsky A A and Evans W D 1998 Lett. Math. Phys. 44 233-48
[2] Balinsky A A and Evans W D 1998 Stability of one-electron molecules in the Brown-Ravenhall model Preprint mp_arc/98-436 and ESI-560 (Commun. Math. Phys. to appear)
[3] Brown G E and Ravenhall D G 1952 Proc. R. Soc. A 208 552-9
[4] Burenkov V I and Evans W D 1998 On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms Proc. R. Soc. Edin. 128 A 993-1005
(Burenkov V I and Evans W D 1997 Preprint mp_arc/97-247)
[5] Conlon J G 1984 Commun. Math. Phys. 94439
[6] Daubechies I and Lieb E H 1983 Commun. Math. Phys. 90 497-510
[7] Dyson F J and Lenard A 1967 J. Math. Phys. 8423 Dyson F J and Lenard A 1967 J. Math. Phys. 9698
[8] Evans W D, Perry P and Siedentop H 1996 Commun. Math. Phys. 178733
[9] Fefferman C and de la Llave R 1986 Rev. Math. Iberoamericana 2119
[10] Hardekopf G and Sucher J 1985 Phys. Rev. A 31 2020-9
[11] Herbst I 1977 Commun. Math. Phys. 53285
[12] Lieb E H, Siedentop H and Solovej J P 1997 J. Stat. Phys. 89 37-59
[13] Lieb E H and Thirring W E 1975 Phys. Rev. Lett. 35687 Lieb E H and Thirring W E 1975 Phys. Rev. Lett. 351116 (errata)
[14] Lieb E H and Yau H-T 1988 Commun. Math. Phys. 118177
[15] Tix C 1998 Bull. London Math. Soc. 30 283-90
[16] Tix C 1997 Self-adjointness and spectral properties of a pseudo-relativistic Hamiltonian due to Brown and Ravenhall Preprint mp_arc/97-441
[17] Weder R 1975 J. Funct. Anal. 20 319-37

